
Untyped XQuery Canonization

Nicolas Travers1, Tuyêt Trâm Dang Ngoc2, and Tianxiao Liu3

1 PRiSM Laboratory-University of Versailles, France. Nicolas.Travers@prism.uvsq.fr
2 ETIS Laboratory - University of Cergy-Pontoise, France.

Tuyet-Tram.Dang-Ngoc@u-cergy.fr
3 ETIS Laboratory - University of Cergy-Pontoise, France. Tianxiao.Liu@u-cergy.fr

Abstract. XQuery is a powerful language defined by the W3C to query
XML documents. Its query functionalities and its expressiveness satisfy the
major needs of both the database community and the text and documents
community. As an inconvenient, the grammar used to define XQuery is thus
very complex and leads to several equivalent query expressions for one same
query. This complexity often discourages XQuery-based software developers
and designers and leads to incomplete XQuery handling.
Works have been done in [DPX04] and especially in [Che04] to reduce equiv-
alent forms of XQuery expressions into identified ”canonical forms”. How-
ever, these works do not cover the whole XQuery specification.
We propose in this paper to extend these works in order to canonize the
whole untyped XQuery specification.

Keywords: XQuery evaluation, canonization of XQuery, XQuery processing

1 Introduction

The XQuery [W3C05] query language defined by the W3C has proved to be an
expressive and powerful query language to query XML data both on structure and
content, and to make transformation on the data. In addition, its query function-
alities come from both the database community, and the text community. From
the database languages, XQuery has inherited from all data manipulation func-
tionalities such as selection, join, ordering, set manipulation, aggregation, nesting,
unnesting, ordering and navigation in tree structure. From the document commu-
nity, functions as text search, document reconstruction, structure and data queries
have been added.

The XQuery query language is expressed using the famous FLWOR (FOR
...exp... LET ...exp... WHERE ...exp... ORDER ...exp... RETURN...exp...) ex-
pression form. But this simple form is not so simple: thus, any expression exp can
also be recursively a FLWOR expression but also a full XPath expression.

In Table 1, Query A is a complex XQuery expression that defines a function that
selects books with constraints on price, keywords and comments and that returns
price and isbn depending on the number of returned titles. This query contains
XPath Constraint, Filter, Quantifier, Document construction, Nesting, Aggregate,
Conditional and Set operation, Ordering, Sequence and Function.

However, by using XQuery specifications, some expressions are found to be
equivalents (ie. give the same result independently of the set of input documents).
Thus, the Query B in Table 1 is an equivalent form of the previous Query A.
Query A Query B

declare function local:f($doc as xs:string) as element()
{

for $x in
(doc(”rev.xml”)/review|doc(”$doc”)/catalog) [.
contains(”Robin Hobb”)]/book/[.//price > 15]

where some $y in $x/comments
satisfies contains ($y, ”Excellent”)

order by $x/@isbn
return

<book>
{$x/@isbn}
<price>{$x//price/text()}</price>
{

if (count($x/title) > 2)
then {for $z in doc(”books.xml”)/book

where $z/@isbn = $x/@isbn
return

<title>{($z/title)[3]}</title>}
else <title/>

}
</book>

}

declare function local:f($doc as xs:string) as element()
{

let $l1 := for $f1 in doc(”rev.xml”)/review
for $f2 in doc(”$doc”)/catalog
return ($f1 | $f2)

for $f3 in $l1
for $x in $f3/book
let $l2 := for $y in $x/comments

where contains ($y, ”Excellent”)
return $y

let $l3 := orderby ($x, $x/@isbn)
for $ordered in $l3
let $l4 := count ($ordered/title)
let $l5 := for $z in doc(”books.xml”)/book

let $l6 := $z/title
where

$z/@isbn = $ordered/@isbn
and $z/position () == 3

return <title>{$l6}</title>
where

contains($f3, ”Robin Hobb”)
and $x//price > 15
and count ($l2) > 0

return
<book>

{$ordered/@isbn}
<price>{$ordered//price/text()}</price>
{

if ($l4 > 2)
then {$l5}
else <title/>

}
</book>

}

Table 1. Two equivalent XQuery queries
XQuery can generate a large set of equivalent queries. In order to simplify

XQuery queries studies, it is useful to identify sets of equivalent queries and asso-
ciate them with a unique XQuery query called : Canonical query. This decompo-
sition is used in our evaluation model called TGV [TDL06,TDL07] in which each
canonized expression generates a unique pattern tree. This paper aims at allowing
all XQuery representation by adding missing canonization rules (not studied in
[Che04] and [OMFB02]).

The rest of this paper is organized as follows. The next section describes related
works, especially canonical XQuery introduced by [Che04]. Section 3 focuses on our
extension of [Che04]’s work to the canonization of the full untyped XQuery. Section
4 reports on validation of our canonization rules and finally, section 5 concludes.

2 Related Work

2.1 GALAX

GALAX [FSC+03] is a navigation-based XQuery processing system. It has first
propose a full-XQuery support by rewriting XQuery expression in the XQuery

core using explicit operation. The major issue of the navigational approach is to
evaluate a query as a series of nested loops, whereas a more efficient evaluation plan
is frequently possible. Moreover, the nested loop form is not suitable in a system
using distributed sources and for identifying dependencies between the sources.

2.2 XPath

[OMFB02] proposes some equivalence between XPath axes. Those equivalences
define XPaths in a single form with child and descendant expressions. Each ”or-
self ” axis is bound to a union operator. A ”Parent” or ”Ancestor” axis is bound
to a new variable with an ”exist()” function a child/descendant. Table 2 illustrates
some canonization of XPath axis.

XPath with specific axis Canonized XPath

for $i in //a/parent::b for $i in //b
where exists ($i/a)

for $i in //a/ancestor::b for $i in //b
where exists ($i//a)

for $i in //a/descendant-or-self::b for $i in //a(//b | /.)
for $i in //a/ancestor-or-self::b for $k1 in //b

for $k2 in $k1//a
for $i in ($k1 | $k2)

Table 2. XPath canonization

2.3 NEXT

Transformation rules suggested by [DPX04] are based on queries minimization of
[AYCLS01] and [Ram02] in NEXT. They take as a starting point the group-by
used in the OQL language, named OptXQuery. In order to eliminate redundancies
while scanning elements, NEXT restructures the requests more efficiently to process
nested queries. We do not take into account those transformation rules since [Che04]
proposes transformation rules that create ”let” clauses (and not a group by from
OQL).

2.4 GTP

Works on GTP [Che04] propose transformation rules for XQuery queries. Aim-
ing at structuring queries, XQuery queries are transformed in a canonical form of
XQuery. The grammar of canonical queries is presented in table 3. This form is
more restricted than XQuery specifications, but it allows us to cover a consequent
subset of XQuery.

expr ::= (for $fv1 in range1, ... , $fvm in rangem)?
(let $lv1 := ”(” expr1 ”)”, ... , $lvn := ”(” exprn ”)”)?
(where ϕ)?
return <result>

< tag1 >{arg1}< /tag1 > ... < tagn >{argn}< /tagn >
< /result>

Table 3. Canonical XQuery in GTPs

Thus, we obtain a specific syntax that enables us identifying XQuery main
properties. These canonized queries must match the following requirements:

– XPath expressions should not contain building filters.
– expr expressions are XPaths or canonical XQuery queries.
– Expression ϕ is a Boolean formula created from a set of atomic conditions with

XPaths and constants values.
– Each range expression must match the definition of a field of value.
– Each range expression is an XPath or an aggregate function.
– Each aggregate function can be only associated to a let clause.

In [Che04], it is shown that XQuery queries can always be translated into a
canonical form. Lemmas enumerated below show canonical transformation rules.

1. XPath expressions can contain restrictions included in filters (between ”[]”).
With XQuery specifications, those filters can be replaced by defining new vari-
ables that are associated with predicate(s) (within the filter) into the where
clause. Table 4 illustrates a transformation of a filter.

XQuery query Canonized form

for $i in doc(”cat.xml”)/catalog/book
[@isbn=”12351234”]/title

return {$i}

for $j in doc(”cat.xml”)/catalog/book
for $i in $j/title
where $i/@isbn = ”12351234”
return {$i}

Table 4. Query with filters
2. A FLWR expression with nested queries can be rewritten into an equivalent

expression in which FLWR expressions are declared in let clauses. The new
declared variable is used instead of the nested query. An example given in table
5 redefined a nested query in the let clause: ”let $l: = (...)”, and the return
value becomes $t.

XQuery query Canonized form

for $i in doc(”cat.xml”)/catalog/book
return <book>

{for $j in $i/title return {$j}}
</book>

for $i in doc(”cat.xml”)/catalog/book
let $l := (for $j in $i/title return {$j})
return <book>{$l}</book>

Table 5. Nested queries transformation
3. A FLWR expression with a quantifier ”every”can be transformed into an equiv-

alent one using an expression of quantity. XQuery syntax defines quantifiers ev-
ery as a predicate associated to the Boolean formula ϕ. The quantifier checks
if each selected tree verifies the predicate. Table 6 returns all books for which
all prices which are strictly higher than 15 euros. In order to simplify and to
canonize this query, the ”let” clause is created, containing books whose prices
are lower or equal than 15 euros. If the number of results is higher than 0, then
the selected tree ($i) does not satisfy the quantifier ”every”and is not returned.

XQuery query Canonized form

for $i in doc(”cat.xml”)/catalog/book
where every $s in $i/price

satisfies $s > 15
return {$i}

for $i in doc(”cat.xml”)/catalog/book
let $l :=(for $j in $i/price

where $j <= 15
return {$j})

where count($l) = 0
return {$i}

Table 6. Transformation of a quantifier ”every”

4. In the same way, a FLWR expression, containing a quantifier ”some”, can be
transformed. It is the same transformation, but the tree is selected if there is
at least a tree that checks the condition (in the ”let” clause).

5. Aggregates functions defined in FLWR expressions can be rewritten in ”let”
clauses, associated to a new variable. This variable replaces the aggregate func-
tion at the previous location.

Table 7 shows transformation of a nested query, an aggregate and a filter.

XQuery query Canonized form

for $y in doc(”rev.xml”)/review
[. contains (”daulphin”)]/book

where
$y/price > 15

return
<result>

{$y/@isbn}
{$y/price}

<nb titles>{
for $z in collection (”books”)/book

where $z/@isbn = $y/@isbn
return

{count ($z/title)}
}</nb titles>

</result>

for $x in doc(”rev.xml”)/review,
$y in $x/book

let $l1 := (
for $z in collection (”books”)/book
let $l2 := count ($z/title)
where $z/@isbn = $y/@isbn
return {$l2}

)
where $x contains (”dauphin”)

and $y/price > 15
return

<result>
{$x/@isbn}
{$y/price}
<nb titles>{$l1}</nb titles>

</result>

Table 7. Canonization of a nested query, an aggregate Function and a filter
As we can see, rules minimization [DPX04] and canonization [OMFB02] [Che04]

helps at transforming XQuery queries into a canonical form. The [Che04] approach
is more likely to deal with our needs, but it does not handle: Ordering operators,
Set operators, Conditional operators, Sequences and Functions declara-
tion.

Thus, we propose some more canonization rules in order to handle those XQuery
requirements, making it possible to cover a more consequent set of the XQuery
queries. Those new canonization rules will allow us to integrate those expressions
in our XQuery representation model: TGV [TDL07] (Tree Graph View).

3 Canonisation

As said in the previous section, transformation rules transform a query into a
canonical form. Since, it covers a subset of XQuery; we propose to cover much
more XQuery queries. Thus, we add new canonization rules that handle all untyped
XQuery queries.

In [Che04], five categories of expression are missing: ordering operators, set op-
erators, conditional operators, sequences and function declaration. We thus propose
to add canonization rules for each of those expressions.

3.1 Ordering (Order by)

Ordering classifies XML trees according to one or more given XPaths. The order of
the trees is given by nodes ordering on values, coming from XPaths. This operation
takes a set of trees and produces a new ordered set.

Lemma 3.1 : Ordering

An XQuery query containing an Order By clause can be transformed into an equiva-
lent query without this clause. It is declared in a let clause with an aggregate func-
tion orderby() whose parameters are ordering fields with XPaths, and the ascend-
ing/descending sorting information. The orderby function results a set of sorted trees.
The new linked variable replaces original used variables into the return clause. To keep
the XML trees flow, a for clause is added on the given variable.

To obtain a canonical query, the order by clause must be transformed into a
let clause. In fact, ordering is applied after for, let and where clauses, and before
the return clause. Thus, results of preceding operations can be processed by the
aggregate function: orderby(). This function orders each XML trees with a given
XPath. Then, this aggregate function is put into a let clause, as specified in the
canonical form. The new variable replaces all variables contained into the return

clause.

Proof: Take a query Q. If Q does not contain an orderby clause, it is then
canonical (for the order criteria).

Let us suppose that Q has n orderby clauses: order by $var1/path1, $varn/pathn.
Using the transformations lemmas on XPaths, pathx are in a canonical form. The
query Q is said to be canonical if the orderby clause is replaced by a let clause with
an aggregate function orderby, and each transformed corresponding variable.

It is then necessary to study 3 cases of orderby clause:

1. If a variable is declared: order by $var1/path1 return $var1/path2, then: let $t:
= orderby ($var1, $var1/path1) return $t/path2;

2. If two variables (or more) are declared, but identical: order by $var1/path1,
$var1/path2 return $var1/path3, then: let $t: = orderby ($var1, $var1/path1,
$var1/path2) return $t/path3;

3. If two variables (or more) are declared, but different: order by $var1/path1,
$var2/path2 return {$var1/path3, $var2/path4 }, then: let $t1: = orderby ($var1,
$var1/path1), $t2: = orderby ($var2, $var2/path2) return {$t1/path3, $t2/path4

}.

Then, the (n + 1)th orderby expressions in query Q can be written with n
orderby expression, since a query with no orderby expression is canonical, then
recursively, Q can be written without orderby clause.

Here is a example of an orderby clause canonization:

XQuery query Canonized form

for $i in /catalog/book
order by $i/title
return $i/title

for $i in /catalog/book
let $j := orderby ($i, $i/title)
for $k in $j
return $k/title

Table 8. Orderby canonization example

In table 8, the for clause selects a set of book elements contained in catalog.
Then, it is sorted by values of the title element, and linked to the $j variable.
The orderby clause canonization gives a let clause: $j, whose ordering function
orderby() takes the variable $i for the input set, and $i/title to sort. The result set
is then defined into the for clause ($k), in order to build a flow of XML trees. This
new variable is used in the return clause by modifying XPaths ($k/title instead of
$i/title).

Then, we obtain a canonized query without orderby clauses. This let clause
creates a step of evaluation that would be easily identified in the evaluation process.

3.2 Set operators

Set operators express unions, differences or intersections on sets of trees. It takes
two or more sets of trees to produce a single set. A union operator gathers all sets
of trees, a difference operator removes trees of the second set from the first one and
an intersection operator keeps only trees that exist in the two sets.

Lemma 3.2 : Set Operator

An XQuery query containing a set operator can be transformed into an equivalent query
where the expression is decomposed and contains a let clause with two canonized ex-
pressions. The return clause contains the set operator between the two expressions.

Proof: Let’s take a query Q. If the query Q does not contain a set operator
between two FLWR expressions, then it is known as canonical.

When a query Q contains n + 1 set operators between two expressions (other
than variables), using canonization lemmas, we can say that this expressions are
canonical. Let’s take ξ, the set operator defined as {union, intersect, except}
(union, intersection, difference), then the table 9 illustrates the four possibilities
of transformation:

Set expression Canonized expression Comments

(expr1 ξ expr2) let $t3 := for $t1 in expr1 each expression is defined by
for $t2 in expr2 a new variable. Those are
return ($t1 ξ $t2) linked by the operator.

(expr1 ξ expr2)/P let $t3 := for $t1 in expr1 The expression is broken up.
for $t3 in expr2 1) the set operator
return ($t1 ξ $t2) 2) the expression is replaced by

... $t3/P the variable.
$XP (P1 ξ P2) for $tx in XP A new variable is created.

let $t3 := for $t1 in $tx/P1 Apply the set operator (rule 1)
for $t2 in $tx/P2 on the new variable
return ($t1 ξ $t2)

$XP (P1 ξ P2)/P3 for $tx in XP Use the second and third
let $t3 := for $t1 in $tx/P1 decomposition rule on set

for $t2 in $t2/P2 expressions between XP et P3

return ($t1 ξ $t2)
... $t3/P

Table 9. Transformation of different set expressions

Thus, a query Q that contains n + 1 set operators between two expressions can
be rewritten with n set operators. If there are no set operators, it is canonical.
Then, recursively, any query Q can be canonized without set operators.

Here a canonization example of a set expression:
XQuery query Canonized form

for $i in (/catalog | /review)/book
return $i/title

let $i3 :=
for $i1 in /catalog
for $i2 in /review
return ($i1 | $i2)

for $i in $i3/book
return $i/title

Table 10. Canonization of a set expression

In table 10, the for clause contains a union ”|” between two sets. The first set
is /catalog and the second one /review. On each one, the book element is selected.
The title is then projected for each book. The canonization of the union operator
(shortened ”|”) gives a let clause ($i3) containing two expressions $i1 and $i2. Each
one is defined by a for clause on expected paths. The let clause $i3 returns the
union of the two variables. Then, the XML trees flow is rebuilt by the for clause
i3 on the book element. We then obtain a canonized query where set operators are
decomposed to detail each step of the procedure.

3.3 Conditional operators

Conditional operators bring operational processing on XML documents. Indeed,
results of conditional operators depend on a given predicate. Then, the first result
is returned if the constraint is true, the second one else. In the possible results, we
can find XPath expressions, nested queries, tags or strings. In the case of nested
queries, it is then necessary to canonize them to create a single canonized form.

Lemma 3.3 : Conditional Operators

An XQuery query containing a conditional operator (if/then/else) and a nested query,
this one can be transformed into an equivalent query where the nested query will be
declared in a clause let.

This lemma can be demonstrated in the same way of unnested queries [Che04]
(section 2.4). Thus, recursively, we are being able to show that any query containing
a nested query in a conditional operator can be canonized.

Here is a canonization example of a query with a conditional operator:

XQuery query Canonized form

for $i in /catalog/book
return

{if contains ($i/author, ”Hobb”)
then (for $j in $i//title return $j)
else ($i/author)}

for $i in /catalog/book
let $l := for $j in $i//title return $j
return

{if contains ($i/author, ”Hobb”)
then ($l)
else ($i/author)}

Table 11. Canonization example of conditional operators

In table 11, a conditional operator is declared in the return clause with a con-
straint on the author’s name that must contain the word Hobb. If the word is
contained, the nested query $j returns the title(s) of book else the author is re-
turned. We obtain a canonized query where nested queries in conditional operators
are set in a let clause.

3.4 Sequences

Sequences are sets of elements on which operations are applied. Indeed, when a
constraint is applied on a sequence using brackets (XPath), the constraint is applied
on the set of the trees defined by XPath (and not on each one). This operation
gathers sets of trees in order to produce a unique set one which we apply the given
constraint.

Lemma 3.4 : Sequences

An XQuery query containing a sequence can be rewritten in an equivalent query without
sequences. Each sequence is translated in a let clause on which operations are put.

Sequences’ filters behave like on current XPaths. They applied on results of the
sequence. So, the proof is similar to the filter’s one in lemma (2.3.1) of [Che04].
Sequences are built by grouping information. Thus any sequence expression is de-
clared in a let clause, generating a new variable that could be used in the remaining
query.

XQuery query Canonized form

for $i in (/catalog/book)[2]
return $i/title

let $i1 := for $x in /catalog/book
return $x

for $i in $i1
where $i/position() == 2
return $i/title

Table 12. Example of sequences canonization

In table 12, a sequence is defined in the for clause. The catalog’s book set is
aggregated. Then the second book element is selected (and not the second element
of each set). Then, its title is projected. The canonization step produces a let clause
in which the for clause is declared on required elements. Then, the new variable is
used in the for clause $i with a constraint on position. Finally, the title is returned.

3.5 Functions

Function definition is useful to define a query that could be re-used many times, or
to define queries with parameters. In XQuery, functions take parameters in input
and a single set in output. Inputs and output are typed.

Lemma 3.5 : Functions

An XQuery function containing an XQuery expression can be rewritten in an equivalent
function containing a canonical expression.

In Table 13, a function is defined (local: section) with a parameter in input.
This input is defined by the for clause: for $f in doc(”catalog.xml”)/catalog, which
set of trees will be used in the called function: local:section ($f). In the function,
each book element returns its title, and the set of all the titles contained in the
sections ($/section/title). As we can see, the function contains a nested query. The

unnesting canonization step transforms the query into a canonized form inside the
function.

XQuery query Canonized form

declare function local:section
($i as element()) as element ()* {

for $j in $i/book
return

<book>
{$j/title}
{for $s in $i/section/title
return <section>

{$s/text()}
</section>}

</book>
}
for $f in doc(”catalog.xml”)/catalog
return local:section($f)

declare function local:section
($i as element()) as element ()*

{
for $j in $i/book
let $l := (for $s in $i/section/title

return <section>
{$s/text()}

</section>)
return

<book> {$j/title} {$l} </book>
}
for $f in doc(”catalog.xml”)/catalog
return local:section($f)

Table 13. Function transformation

3.6 Canonical XQuery

Thus, using the previous lemmas and those proposed by [Che04], we can cover a
broad set of expressions over XQuery. We can now cover: 1© XPath expressions
with filters 2© for, let and return clauses 3© Predicates in the where clause 4©
Nested queries 5© Aggregate functions 6© Quantifiers 7© Ordering operators 8© Set
operators 9© Conditional operators 10© Sequences 11© Definition of functions. The
only part of XQuery we do not consider yet is typing. Adding typing to the canon-
ized form needs some works using XQuery/XPath typing consideration [GKPS05]
on validated XML document.

Table 14 summarizes the additional canonization rules we propose. Those rules
allow us to cover all untyped XQuery queries.

Expressions Canonical Form

R1 order by var/xp ⇒ let $l1 := orderby(var, var/xp)
R2 (expr1 union expr2) ⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 union $i2)

(expr1 intersect expr2) ⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 intersect $i2)
(expr1 except expr2) ⇒ let $i3 := for $i1 in expr1, $i2 in expr2 return ($i1 except $i2)

R3 if expr1 let $l1 := expr2, $l2 := expr3

then expr2 ⇒ if expr1 then $l1 else $l2
else expr3 (if each expr2 and expr3 are nested queries)

R4 (expr1)/expr2 ⇒ let $l1 := expr1 ... $l1/expr2

Table 14. Proposed canonization rules

Using all these rules, we can now deduce that the canonized form of Query A
of Table 1 is the Query B of Table 1.

Theorem 3.1 : Canonization

All untyped XQuery queries can be canonized.

With all previous lemmas, we can infer theorem 3.1 that defines a grammar
for canonical XQuery queries (Table 15). We can see that canonical queries start
with a FLWR expression Expr and zero or more functions. The canonical form of
Expr is composed of nested queries, aggregate functions, XPaths and non-aggregate
functions. Moreover, set operators are integrated in these expressions, while the
conditional operations are integrated into ReturnClause. The Declaration has also

a canonical form that prevents any nested expressions. XPaths do not contained
anymore filters, sequences, nor set operators, since those are canonized.

XQuery ::= (Function)* FLWR;
FLWR ::= (”for” ”$” STRING ” in ” Declaration

(, ”$” STRING ” in ” Declaration)*
| ”let” ”$” STRING ”::=” ”(” Expr ”)”

(, ”$” STRING ”::=” ”(” Expr ”)”)*)+
(”where” Predicate ((”and” | ”or”) Predicate)*)?
”return ” ReturnClause ;

ReturnClause ::= ”{” CanonicExpr ”}”
| ”{” ”if” Predicate ”then” ”(” Expr ”)” ”else” ”(” Expr ”)” ”}”
| ”<” STRING ”>” (ReturnClause)* ”</” STRING ”>” ;

Expr ::= FLWR | ”(” Path SetOperator Path ”)” | CanonicExpr | aggregate function ;
CanonicExpr ::= Path | non aggregate function;
Declaration ::= ”collection” ”(’ ” STRING ” ’)” (XPath)? | CanonicExpr;
Path ::= ”$” STRING XPath (EndXPath)?;
Predicate ::= V al Comp V al | QName ”(” ((V al ”,”)* V al)? ”)”;
Comp ::= ”>” | ”<” | ”=” | ”<=” | ”>=” | ”! =” ;
Val ::= ’ STRING ’ | Number | Path;
XPath ::= (”/” Element | ”//” Element)+;
SetOperator ::= ”|” | ”-” | ”/” ;
EndXPath ::= ”/” (Attribut | Element | ”text()”);
Element ::= (QName | ”.” | ”..”);
Attribute ::= ”@” QName;
QName ::= (STRING ”:”)? STRING;
Function ::= ”declare function” QName ”(” ”$” STRING ”as” ”element”

(”,” ”$” STRING ”as” ”element”)* ”)” ”as” ”element” ”{” FLWR ”}”;

Table 15. Untyped Canonical XQuery

4 Validation

The use cases listed in Table 16 were created by the XML Query Working Group
to illustrate important applications for an XML query language. Each use case is
focused on a specific application area. Each use case specifies a set of queries that
might be applied to the input data, and the expected results for each query. They
are designed to cover the most part of XQuery specification.

Use case Description Specified Recognized

”XMP” Experiences and Exemplars 12 12
”TREE” Queries that preserve hierarchy 6 6
”SEQ” Queries based on Sequence 5 5
”R” Access to Relational Data 18 18
”SGML” Standard Generalized Markup Language 10 10
”STRING” String Search 5 5
”NS” Queries Using Namespaces 8 8
”PARTS” Recursive Parts Explosion 1 1
”STRONG”queries that exploit strongly typed data 12 0

Table 16. Use cases, number of specified queries, number of supported queries

Our canonization rules cover 8 of 9 use cases [DPD+05] of the W3C: XMP,
TREE, SEQ, R, SGML, STRING, NS, PARTS. The use-cases category not covered
by our canonization rules is the STRONG category that queries type information.

We have already implemented the XQuery canonization in our XML-based me-
diation system: XLive[TD07]. With the canonization, the XQuery processor has
been easier to design and implement, and any untyped XQuery can be evaluated
with XLive.

5 Conclusion

In this paper, we have extended the works of [OMFB02] and [Che04] in order to
recognize the full untyped XQuery specification.

We claim that thanks to our canonization rules, all works that aim to manipulate
XQuery could handle the full untyped XQuery specification with only a minimal
XQuery subset to recognize. Especially for our TGV model [TDL06,TDL07] which
is a simple translation from canonized XQuery queries [TDN07].

Adding typing to the canonized form needs some works using typing consid-
eration [GKPS05] on validated XML document. We are currently working on this
issue.

This work has been implemented as a module in the XLive mediation system
that evaluates any XQuery query on distributed heterogeneous sources.

Acknowledgement This work is supported by the ACI Semweb and the ANR
PADAWAN projects. The research prototype XLive system is an Open Source soft-
ware and can be downloaded on : http : //www.prism.uvsq.fr/users/ntravers/xlive

References

[AYCLS01] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimiza-
tion of Tree Pattern Queries. In SIGMOD Conf., 2001.

[Che04] Z. Chen. From Tree Patterns to Generalized Tree Patterns : On Efficient
Evaluation of XQuery, 2004.

[DPD+05] D.Chamberlin, P.Fankhauser, D.Florescu, M.Marchiori, and J.Robie. XML
Query Use Cases, september 2005.

[DPX04] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Framework for
Logical XQuery Optimization. In VLDB, pages 168–179, 2004.

[FSC+03] M.F. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing
xquery 1.0: The galax experience. In VLDB, 2003.

[GKPS05] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath
query evaluation and XML typing. ACM (JACM), 52, 2005.

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath : Looking Forward. In
Proc. of the EDBT Workshop on XML Data Management (XMLDM), volume
2490 of LNCS, pages 109–127. Springer, 2002.

[Ram02] P. Ramanan. Efficient Algorithms for Minimizing Tree Pattern Queries. In
ACM SIGMOD, pages 299–309, June 2002.

[TD07] N. Travers and T.-T. Dang Ngoc. XLive : Integrating Source With XQuery.
WebIST, March 2007.

[TDL06] N. Travers, T.-T. Dang Ngoc, and Tianxao Liu. TGV: an Efficient Model
for XQuery Evaluation within an Interoperable System. Interoperability in
Business Information Systems (IBIS), December 2006.

[TDL07] N. Travers, T.-T. Dang Ngoc, and Tianxao Liu. TGV : a Tree Graph View
for Modelling Untyped XQuery. Database Systems for Advanced Applications
(DASFAA international conference), April 2007.

[TDN07] N. Travers and T.-T. Dang-Ngoc. An extensible rule transformation model
for xquery optimization. In The 9th International Conference on Enterprise
Information Systems (ICEIS), Madeira, Portugal, 2007.

[W3C05] W3C. An XML Query Language (XQuery 1.0), 2005.

