Integrating Web information with XML Concrete Views

Tuyét-Tram Dang-Ngoc Huaizhong Kou

Georges Gardarin

PRiSM Laboratory, University of Versailles, France
+33(0)1 39 2543 15

{Firstname.Lastname}@prism.uvsq.fr

ABSTRACT

To cope with the difficulties of Web information search,
lots of technologies related to Web search engines have
been proposed and have also seen very successful
applications. Rather than yet another Web search engines
with general purpose, this paper couples text mining and
XML view caching techniques within Web mediation
architecture and presents a prototype framework for topic-
centric Web information search. Given a topic domain,
domain-specific information is extracted from the Web
documents belonging to the domain, then text-mining
technologies are applied to discover the semantics
contained in the Web information. Next we integrate the
extracted information into a domain-specific common
concept model defined using semantic Web languages.
Finally an XML-based mediator allows the users to query
the integrated Web information using XQuery. Once Web
information is represented in the concept model with
explicit semantic hierarchy understandable to the
programs, user's queries against special fragments of Web
documents can be carried out. One important part of our
works aims at integrating XML view and cache techniques
to manage Web information. Checksum technology is used
to monitor the updates of Web page. One prototype is
under construction centered on popular French sites of the
finance domain.

Keywords
Web, Semantic Integration, XML, Mediator.

1. INTRODUCTION

Data integration and mediation are important technologies
widely used in the information search applications that
involve different information sources. As early as 1992,
Wiederhold proposed a mediation architecture [13] for
combining information from multiple data sources.
Generally speaking, the mediation architecture consists of
two types of components: wrappers and mediators. A
wrapper is a software module built around an information
source that logically converts the underlying data objects
to a common information model [6]. A mediator is a
software module that exploits encoded knowledge about
certain sets or subsets of data to create integrated
information for a higher layer of applications [13]. From

then on, the mediation architecture is adopted by query-
based information integration systems.

In the last years, faced to the increasing growth of
information in electronic form accessible over the Web,
the capabilities of efficient search and assimilation of
Web information become more and more urgent. But
compared to the case of searching information from
multiple heterogeneous databases, searching from various
Web sources is complex. In the first case, the major
concern is the mismatch encountered in information
representation and structure [13]. When integrating or
combining various Web information, the major problems
encountered include large and evolving number of Web
sources, little meta-data available about Web sources, no
clear Web source semantics accessible to applications,
autonomy of Web sources, to name a few. To tackle these
problems, XML-based technologies are increasingly used
to describe and construct web sites. In the resource
description area, major efforts are in progress under the
Semantic Web activity at W3C (e.g., OWL). In the
information search area, the classical mediation
architecture has been adopted targeted at XQuery; XML
views and caching techniques have been proposed for
Web information integration [2][4][14].

In the framework of Web mediation architecture, we
combined related existing technologies to provide topic-
centric Web information search. Web wrapper technology
is employed to extract domain-specific information from
the Web interesting sites. Text mining techniques such as
text categorization are applied to discover the semantics
contained in the Web documents. The extracted Web
information with their semantics are integrated into a
domain-specific common concept model defined using
semantic Web languages. An XML-based mediator called
XLive is built on the top of the domain concept model,
which allows the users to query Web information using the
XQuery language. Once that Web information is
represented in the concept model with explicit semantic
hierarchy understandable to the programs, user's queries
in XQuery against special fragments of Web documents
can also be carried out thereof.

One important part of our works aims at developing
efficient XML view techniques to manage Web
information and exploiting cache techniques to optimize

information search performance over the Web. To
optimize loading of source pages, lazy techniques are used
to update concrete views. Timestamp, RDF description
and checksum are used to monitor the updates of a Web
page. XQuery view concretization accelerates information
access. In the context of the project WebSI', we are
constructing a prototype integrating some of these
techniques. To evaluate the proposed system, we are
federating some popular French sites of finance domain.

The rest of this paper is organized as follows. Section 2
describes the objectives and the architecture of our
prototype. Section 3 introduces the mediator XLive to
integrate and query distributed sources. Both Web
wrapper technologies for extracting Web data and text
mining technologies for semantics enrichment are
discussed in Section 4. Section 5 introduces our principles
of managing XML views. In Section 6, some related work
is discussed and the main contributions of our work are
outlined.

2. OBJECTIVE AND ARCHITECTURE
2.1 Objective

Traditional Web information search engines consider Web
documents as simple character flows and neglect
document semantics. User's query languages are mainly
based on keywords. In this case, to respond a user's query
the search engines search for query terms through entire
documents and return the matching documents. Such
keyword based full content search brings out some
problems. For instance, it is not capable of taking
advantage of the internal structures present in documents;
it cannot return only document fragments containing
relevant query terms; it cannot take into account the
semantic context of document fragment.

Our objective is to develop a topic-centric semantic Web
information search system rather than a general-purpose
search system. Topic-centric search is quite natural,
because the users have clear image of topics to be
searched for. For this, given an application domain, a
common ontology must be defined to express Web
information belonging to the same domain. Some domain-
specific semantics contained in Web documents have to be
discovered so that Web documents be machine
understandable. Machine understandable semantic
structure can support information search at different
abstract levels of documents.

2.2 Mediation Architecture

We use a mediation architecture to support web
information integration and semantic search as shown in
Figure 1. It follows the classical wrapper-mediator
architecture as defined in [13]. The communication
between wrappers and mediator follows a common

'Supported by the European Union 6™ Framework Program

interface, which is defined by an applicative Java or Web
service interface named XML/DBC. With XML/DBC,
requests are defined in XQuery and results are returned in
XML format.

User/Application Interface

Xlive
Mediator

[wrapper | [wrapper | [wrapper

Relational Other
source sources

Figure 1. Architecture

Our architecture is composed of a mediator named XLive
that deals with distributed data sources and wrappers that
cope with the heterogeneity of the sources (DBMS, Web
pages, etc.). The XLive mediator is a data integration
middleware managing XML views of heterogeneous data
sources. Using XLive one can integrate heterogeneous
data sources without replicating their data while the
sources remain autonomous. XLive is entirely based on
W3C standard technology: XML, XQuery, XML-Schema,
SAX, DOM and SOAP. All information exchanges rely on
XML format. XML-Schema is used for metadata
representation. Wrappers provide schemas to export
information about local data structures. XQuery is
employed for querying both the mediator and the
wrappers. Connectivity of mediator and wrappers relies on
the XML/DBC programming interface, an extension of
JDBC to XML. More information about the XLive
mediator can be found in [7].

To integrate a new source into the mediation architecture,
a wrapper must be built to implement the XML/DBC
programming interface, process some XQuery requests
and return results in XML format.

DBMS are data oriented sources and metadata are
provided to describe sources and mappings. DBMS
wrappers translate data sources in XML and process a
possibly reduced set of XQuery on the source data. In the
case of Web source, the wrapper brings more intelligence.
It aims at semantically integrating Web information in a
common model accessible to programs.

3. SEMANTIC INTEGRATION

Semantic integration of Web information aims at
transferring Web information at different Web sites from
local source interfaces to a high level domain-specific
common information model and making document
semantic machine understandable. It is tri-folds, including
the followings:

= Web data extraction: all domain-interesting information
elements are extracted from related Web documents
situated at various sites. Web wrapper technologies are
employed to cope with such task. A Web wrapper is a

specialized program capable of automatically extracting
data from Web pages and convert the results into
semantically structured documents. Here the extraction
rules are essential to the Web wrapper, which specify
the location of certain interesting information elements
in Web documents and also contain necessary
instructions about how to map Web information
fragments to concepts in domain-specific common data
model. A wrapper can be generated using the smart
toolkit SGWRAP [10].

= Text mining: text mining techniques are applied to
analyze text content of Web information extracted at the
precedent step and discover Web document semantics,
which include topics discussed in Web pages, keywords,
abstract, etc. For this, we have implemented text
categorization machine learning algorithms, keyword
extraction algorithm and statistics-based text
summarization algorithms. Text categorization can
assign to a document one or more than one predefined
categories and can also find main topics contained in
text document, then topics found may furthermore
support the organization of Web information into
domain-specific hierarchy of concepts, such as
categorical organization of finance new stories at the
Yahoo!Finance site. Text summarization provides an
efficient way that allows user to get some insight into
the content of Web documents. Automatic text-span
extraction methods are often practiced to summarize
document. The basic idea of text-span extraction is to
extract some significant sentences from original
document to build a summary. We adopted such
extraction methods introduced in [11]. Semantics
discovered by text mining are integrated within the
common data model of application domain.

= Ontology representation: extracted Web information and
their semantics are represented in a domain-specific
ontology. Despite its population and power, XML has
some limitations with regard to semantic representation.
RDF is used to describe domain ontology. The single
ontology approach [12] is taken to maintain one central
domain ontology.

One software component called SEWISE has been
developed to semantically integrate Web. See [10] for
details on SEWISE.

4. WRAPPING THE WEB USING DOMAIN VIEWS
4.1 Motivation

Views techniques are mostly used to integrate distributed
heterogeneous data [5]. Interesting works on views have
already been done in the XML domain [1][14]. For the
materialized views, incremental view maintenance
strategies have been proposed [3][8].

Within the classical mediation architecture, one wrapper is
built around each data source. In the Web context, since

Web information are distributed at thousands of sites and
pages, it would be too costly to instantiate one wrapper for
each related Web source. One to one relation between
wrappers and traditional data sources is not suitable for
web information integration. Notice that existing Web
pages can be classified into different application domains.
Thus, to overcome combinatorial problems we can
construct one or several views for each application
domain. We build the domain views into one wrapper that
let us transparently retrieve Web information from
different Web sites of related domain. These views are
created according to Web site contents and view
definition. Views are used to optimize Web information
access and process.

‘ User/Application Interface ‘

Xlive
Mediator

Web Wrapper Web Wrapper
(domain 1) (domain 2)

Figure 2. Web wrappers using domain view in
mediation architecture

In addition, as the Web pages are very volatile and
dynamic and loading them is costly, we need one solution
to cope with complexity produced by volatile Web pages.
To do so we create one wrapper to federate Web pages in
the same application domain as shown in Figure 2.

According to update frequency of Web page contents, we
can classify Web pages into three types:

1. Static: The pages are rarely changing. For example a
personal Web page or the description of an enterprise.

2.Semi-dynamic: The pages are periodically updated
and they can be preserved in a cache.

3.Dynamic: The pages are changed at each access time;
it should be reloaded each time.

Downloading Web pages and processing them are
expensive. There are four significant cost factors as
follows:

1.The time of downloading the Web page [9]:
Downloading time includes the processing time that
the application server takes to deliver (static page) or
generate (dynamic page, e.g., PHP or CGI) an HTML
page plus the net communication time.

2.The translating time: the downloaded document can
be of any type (HTML, XML, PDF, etc.). This step

consists of translating the document into XML using
an appropriate translator following the type (such as
TIDY for HTML).

3. The processing time: The processing is made by the
SEWISE component It extracts semantics contained
in Web documents and stores them in a final XML
document.

4.View computing time: It is the execution time of an
XQuery request against XML documents to answer a
specified view.

According to the characteristics mentioned above, to
optimize Web information search, we choose to
materialize XML XQuery views and cache certain
searched information. In general, we avoid to store all the
pages in a cache (because of the dynamic pages) or to
load from the Web all the relevant one on each request
(because of downloading and processing cost).

4.2 Architecture

We propose the architecture given in Figure 3 capable of
managing views against static or dynamic Web pages and
optimizing downloading and processing. We base our
view manager on XML cache techniques to materialize the
views on categorized Web pages. Our goal is to make this
XML cache flexible enough to combine cache availability
with Web connections to minimize the costs. This wrapper
can be used with a mediator or in stand-alone. Its
components are the followings:

Site Trigger Client
Sitef=2— O or manual Application

b
e
update (eg. mediator)
o
XQuen XML
XQuery Y
Update
J
Update
v manager XQuery Processor
Web oI OK
Loader
Translator
SEWISE
View
Manager
Lo%er

Figure 3. XQuery view architecture

4.2.1 XQuery Processor:

When receiving an XQuery request from a user or a client
application (for example the mediator), the XQuery
processor identifies the elements of collection needed for
its evaluation. It asks the update manager for these
elements. After the update manager sends back a
confirmation, the XQuery Processor will carry out its
request against the XML Cache.

4.2.2 Update Manager:

The update manager starts when it receives an update
request from trigger or from the administrator (active case)
but also maybe from a request of the XQuery Processor
("lazy" case). In both cases, it requests the Web loader to
update documents and waits a confirmation from the later
to answer the XQuery Processor.

4.2.3 Web Loader and Logger:

The Web Loader aims at loading Web pages on demand in
the cases that the Web page has not yet been loaded and
that the pages must be updated. Generally speaking, Web
pages are loaded by the Web Loader (stage 1), then they
are converted into XML by a translator associated with the
file type (stage 2) and are passed to SEWISE that
semantically analyze Web pages. For static pages (case 1),
SEWISE processes the Web pages (stage 3) and passes
them to the view manager that stores them (stage 4) in the
XML Cache once time for all. For dynamic pages (case 3),
the pages must go through the expensive process (stages 1,
2, 3 and 4) at each request. The most frequent cases is for
semi-dynamic pages (case 2). In this case a lot of pages do
not change since the last visit, so we need not go through
all three processes (stage 1, 2, 3) that would be too costly.

We use a component named logger to store information
about web pages. This logger keep information about the
last time the page has been loaded (timestamp),
description of the state of the page (RDF date or
checksum) and a list of corresponding identifiers in the
XML Cache.

If an RDF description is associated to Web pages, what
the Web Loader must do is to load the RDF description
and get the date information. Thus to know if Web pages
have been changed since their last loading, we can simply
consult the logger that preserves the timestamp of last
changes.

Unfortunately in practice, RDF descriptions are rarely
used to describe Web pages. In the most of cases it will be
necessary to load whole Web pages and then compare
them with their last loadings in order to decide if the pages
are changed or not. One probably use a Web Cache
(proxy) to store pages lately accessed. But this is very
heavy (volume of accessed pages can be significant).
Since we only need to know whether the pages are
changed, so to do this we can only use the checksums of
Web pages, which are kept in the Logger. For that, a
checksum (as CRC32 or SHA) is calculated from the
downloaded page. If the checksum is different from the
one of the last time the page was downloaded, then it
means that the page has changed.

4.2.4 XML Translator
It transforms received document into XML using a
translator component tool specific to the file type of
downloaded documents.

4.2.5 SEWISE Wrapper:

It analyzes HTML pages, and semantically represents
them in XML documents that are passed to the View
Manager.

4.2.6 View Manager:

The administrator initializes view using view definition
requests. It receives XML documents from the SEWISE
and executes the view definition to materialize them in the
XML cache. At the first delivery of XML documents, it
applies the XQuery view requests to them and stores the
results in the XML cache . For the following delivery, it
updates the XML Cache according to the received
document and the already stored ones. The section 5 will
further discuss XML views.

5. MANAGING XML CONCRETE VIEWS
We materialize the views in an XML cache.
Materialization of the views makes it possible to provide a
faster access to complex views, to optimize the processing
time of a request and to improve data availability. We
store materialized views in the XML cache.

XQuery has already a view mechanism enabled by user-
defined functions. A function without any parameters
corresponds to a non-parameterized view like SQL style,
while a function with parameters corresponds to a
parameterized view. With XQuery we can define XML
Views using the following commands:

non-parameterized view:
define view FOO as

query

parameterized view:
define function FOO () as
expression

The maintenance of materialized view is one of the main
problems [3] [8]. In essence, one hypothesis for
maintaining materialized view is that the view manager is
informed about (by some trigger) the time when the
sources are changed, the details of the change type (insert,
delete, update) and the elements on which these changes
are made (tuple relation, object ids). But in the case of
views on a set of autonomous Web sources, the sources do
not by themselves provide any information at update time.

We choose the lazy approach to update the materialized
view only during evaluation of an XQuery request. So, it is
not necessary for the source to inform the Web wrapper of
eventual changes. In the same way, the Web Loader can
use RDF date or checksum to decide if the Web source
page is modified and then send a message to the view
manager. It is the View Manager that is responsible of
updating the materialized views in the XML cache.

The problem for the View Manager is to maintain the
materialized XML View. One possible solution is that one
reevaluates the view at each update, but that would be too

expensive. We thus implement an algorithm to solve the
update problem of view on distributed autonomous
sources for simple views (that is, views without joins and
aggregates).

Every node stored in the XML cache is identified by a pair
(URL, node id), where URL represents the Web page
containing the node and node_id indicates the position of
the node in the Web page. Without loss of generality, we
can think of a web site as a collection of documents
representing web pages. When we load a page, we can see
if the page has nodes that have been changed, deleted or
added.. The algorithm is as follows :

1) Coll_old <- loadOldCollection (Coll_new.id)

(

(2) if (Coll_old == null) then

(3) register (Coll_new.id)

(4) for (doc_iin Coll_new) do

(5) store (doc_i) in XMLCache

(6) done

(7) elsedo

(8) for (doc_i in Coll_new) do

9) if (doc_i do not exist in Coll_old) then
(10) register (doc_i) in CollectionInformation (Coll_old.ic))
(11) for (node_j in Coll_new) do
(12) add (node_j) in XMLCache
(13) done

(14) else do

(15) for (node_j in Coll_old) do

(16) delete (node_j) in XMLCache
(17) done

(18) for (node_j) in Coll_new do
(19) add (node_j) in XMLCache
(20) done

(21) fi

(22) done

(23) for (doc_iin Coll_old) do
(24) if (doc_i do not exist in Coll_new) then

(25) delete (doc)_i in CollectionInformation (Coll_old.id)
(26) for (node_j in Coll_old) do

(27) delete (node_j) in XMLCache

(28) done

(29) unregister (doc_j)

(30) done

(31) fi

For each collection that has been changed, we load
information about the old one (L1). If it does not exist
(L2), the whole collection of documents is stored and
referenced (L3, L4, LS). Otherwise, we must compare (L8,
L23) documents of the new collection with the ones
already stored in the XML cache by referencing their ID’s.
There are three cases: the document may be a new
document (L9), the document already exists in the
database and is probably modified (L14), and a document
of the XML cache has been deleted (L23). In the first case,
the document is registered (L10) and stored (L11); in the
second case, the nodes of the old document are replaced
by the nodes of the new one (L15-20) ; and in the last
case, the document is unregistered (L29) and the
associated nodes are deleted (L26).

In summary, the proposed strategies can be applied to
maintain the materialized views in various cases.
The view manager can only manage simple views but
needs no complex operations like nested views,
aggregates, products, etc. These kind of operations can be
carried out by higher level user programs. For example, in
the mediator architecture, instead of the wrapper, the
mediator can do these operations.

Due to distributed sources and the tree structure of XML
documents, defining complex view with join or aggregate
would be difficult [3] and moreover maintaining
dependencies between document collections from different
autonomous sites would be very costly. At present, we
only define simple views in our implementation.

6. RELATED WORK AND CONCLUSION

In [13] the Weaves Management System has been
described, which relies on the declarative specification of
Web Sites. This system describes a customizable cache
system that implements the optimal data materialization
strategy according to the Web site’s specifics. They
materialize relational, XML and HTML data to generate
Web pages. Investigations have also been done about the
Web caching [4] of HTML, and more recently XML. Web
wrappers for XML mediation and semantic Web
integration have been developed in the framework of
TSIMMIS [6]. The Xyleme XML warehouse [1] provides
an interesting approach to cache the Web. Xyleme
discovers XML pages on the web that are of interest for
customers. For the Web crawler of Xyleme crawls the
Web (HTML+XML) and maintain up to date copies in the
warehouse. Xyleme provides efficient algorithms to
determine what pages to refresh. OQur approach is more a
mediating approach. It is original in the sense that it
considers mediating information from semantic Web by
using concrete XQuery views for optimization. It also
integrates multiple techniques such as mediation, text
mining, Web wrappers, and concrete views to support
topic centered Web search.

More generally, in this paper we have shown how to
optimize a wrapper for semantic Web integration in a
mediation architecture. The “one wrapper for one source”
schema used in classical mediation architecture is not
exactly suitable for Web sources due to the problem of
performance. Techniques to define XML views and
maintain them have also been presented. We design Web
wrappers as “small mediators” to build a unified XML
view of different sources. We have also described how to
integrate such a wrapper in a full- XML mediation
architecture.

Currently, we are coupling the existing components in the
context of the WebSlI project. We shall report on our work
progresses in future papers.

7. REFERENCES
[1] Abiteboul S., Cluet S., Ferran G., Rousset M.C. The
Xyleme project. Computer Networks 39(3), 2002

[2] Abiteboul S. On Views and XML. PODS: 1999

[3] Abiteboul S., McHugh J., Rys M., Vassalos V.,
Wiener J.L. Incremental Maintenance for
Materialized Views over Semistructured Data. VLDB
pp-38-49, 1998.

[4] Barish G. and Obraczka K. World Wide Web
Caching: Trends and Techniques. 1EEE
Communications Magazine Internet Technology
Series, May 2000.

[5] Chaudhuri S., Krishnamurthy R., Potamianos S., Shim
K. Optimizing queries with materialized views. Proc.
of IEEE Conf. on Data Engineering, 1995.

[6] Chawathe S., Garcia-Molina H., Hammer J., Ireland
K., Papakonstantinou Y., Ullman J., and Widom 1J.
The TSIMMIS Project: Integration of Heterogeneous
Information Sources. In Proc. of IPSJ Conf., pp.7-18,
1994

[7] Dang-Ngoc T.-T. and Gardarin G. Federating
heterogeneous data sources with XML. In Proc. of
IASTED IKS Conf., 2003

[8] El-Sayed M., Wang L., Ding L., Rundensteiner E.A.
An algebraic approach for incremental maintenance
of materialized XQuery views. WIDM 2002: 88-91

[9] Feldmann A., Caceres R., Douglis F., Glass G., and
Rabinovich M. Performance of Web proxy caching in
heterogeneous bandwidth environments. In Proc. of
the IEEE Infocom '99 Conf., New York, 1999.

[10] Gardarin G, Kou H, Zeitouni K., Meng X. and Wang
H., SEWISE: An Ontology-based Web Information
Search Engine, 8" NLDB, Germany, June, 2003

[11]Goldstein J., Kantrowitz M., Mittal V.O., and
Carbonell J. Summarizing Text Documents: Sentence
Selection and Evaluation Metrics. 22"™ ACM SIGIR,
CA, pp.121-128, 1999

[12]Wache H., Vogele T., Visser U., Stuchenschmidt H.,
Schuster G., Neumann H. and Hubner S. Ontology
Based Integration Approaches, 1JCAI Workshop:
Ontologies and Information Sharing, pp.108-11, 2001

[13]Wiederhold G., Mediators in the Architecture of
Future Information Systems, 1EEE Computer,
vol.25,N.3, pp.38-49, 1992

[14] Yagoub K., Florescu D., Issarny V., and Valduriez P.
Caching Strategies for Data-Intensive Web Sites. In
VLDB Journal, pp. 188-199, 2000

