
Classifying XML Materialized Views for their
Maintenance on Distributed Web Sources

Tuyêt-Trâm Dang-Ngoc, Virginie Sans, Dominique Laurent

LICP Laboratory, University of Cergy-Pontoise
2, avenue Adolphe Chauvin

95302 Cergy-Pontoise Cedex. France
{Prenom.Nom}@dept-info.u-cergy.fr

Résumé. Ces dernières années ont mis en évidence la croissance et la
grande diversité des informations électroniques accessibles sur le web.
C’est ainsi que des systèmes d’intégration de données tels que des média-
teurs ont été conçus pour intégrer ces données distribuées et hétérogènes
dans une vue uniforme. Pour faciliter l’intégration des données à travers
différents systèmes, XML a été adopté comme format standard pour
échanger des informations. XQuery est un langage d’interrogation pour
XML qui s’est imposé pour les systèmes basés sur XML. Ainsi XQuery est
employé sur des systèmes de médiation pour concevoir des vues définies
sur plusieurs sources. Pour optimiser l’évaluation de requêtes, les vues
sont matérialisées. La difficulté est de maintenir incrémentalement des
vues matérialisées lors de la mise à jour des sources, car dans le contexte
de sources web, très peu d’informations sont fournies par les sources. Les
méthodes habituellement proposées ne peuvent pas être appliquées. Cet
article étudie comment mettre à jour des vues matérialisées XML sur des
sources web, au sein d’une architecture de médiation.

1 Introduction

In industry as well as in research, data information systems were often built sepa-
rately. This results in highly heterogeneous and distributed systems, which generates
fragmented views of data and information. In 1992, Wiederhold proposed a mediation
architecture (Wiederhold 1992) for combining information from multiple data sources.
The goal of a mediation architecture is to integrate the sources in order to present
a uniform view to the final user or application. Generally speaking, a mediation ar-
chitecture is composed of mediators and wrappers. A wrapper is associated to each
source with the roles of extracting and transmitting information from the sources to
the integrator. Before transmission, the data are transformed into a predefined format
used by the mediator. The mediator integrates information provided by the wrappers
and presents a queryable uniform view to the user application.

To facilitate the integration of data across different systems, XML has been adopted
as the standard format for information exchange and XQuery, a standard query lan-
guage for querying XML, has become a major requirement for XML-based systems.
Recently, mediation architectures based on XML and XQuery have been proposed
and implemented (Dang-Ngoc and Gardarin 2003) (Draper et al. 2001). We also note

Classifying XML Materialized View for their Maintenance on Web Sources

that previous works as (Gupta et al. 1999) use other formats for representing semi-
structured data (eg. OEM) for querying these data (eg. Lorel, XML-QL) with a
similar approach.

In such applications, the use of views is crucial. Indeed, similarly to the case of
relational databases, an XML view can be seen as a collection defined by an XQuery
request. XQuery is used to filter data and integrate them to present the different data
sources as a single source to the user.

View materialization consists in processing the view in a local cache for better
response delay during execution time. However, maintaining materialized views when
the source data are updated is not an easy task in general. This problem has been
studied in (Laurent et al. 2001) for data warehouses. In the context of XML views,
the additional following points have to be taken into account: (a) In a distributed
environment information exchanges must be optimized. (b) In a web context, the
sources are autonomous and thus do not notify their changes, and do not provide
internal properties (such as oids).

When a data source is modified, materialized XML views defined on this data
source have to be updated accordingly in order to remain consistent. As noticed
in (Abiteboul et al. 1998) it is not reasonable to recompute the whole view at each
source update, but it is better to use incremental techniques as (Abiteboul et al. 1998)
(El-Sayed et al. 2002). (Abiteboul et al. 1998) has proposed an incremental mainte-
nance algorithm for materialized views for semi-structured data based on the data
model OEM (different than XML) and the query langage LOREL. However, the query
operations, the possible update operations and the update method form only a very
limited subset of possible requests on semi-structured data. Moreover in this approach,
the internal identifiers of the objects must be known to import the data in the ma-
terialized view, which is not conceivable in the case of autonomous sources. Recently
in the RAINBOW project, (El-Sayed et al. 2002) has proposed a method based on
the decomposition of an XML source document update into basic primitive update
operations (insert/delete/change of attribute or element) which apply to an identified
position in the XML tree. However the assumption that the position of an update is
known cannot apply to autonomous web sources, which do not provide this kind of
information.

In this paper, we consider materialized views on web sources defined by an XQuery
request on a mediator/wrapper architecture. We assume that the contents of the views
are stored in a local XML database. This solution leads to two main questions: (1)
what information is needed for updating the views ? and (2) how to process updates
on the materialized views ?

In this paper, we answer these questions as follows: (1) we classify the different
kinds of updates and propose a solution to maintain the materialized view, based on
the notion of fragment, and (2) starting with the case of view defined by one operator,
we study the general case of views defined by the combinaison of several operators.

The rest of this paper is organized as follows. The next section focusses on update
notification information and Section 3 describes the various update cases. We conclude
in Section 4 by summarizing the contributions and discussing future research.

RNTI - 1

Dang-Ngoc, Sans and Laurent

2 Update Information

The interface between the mediator and the wrapper for querying sources with XQuery
/ XML (Dang-Ngoc and Gardarin 2003) has been extended to support materialized
view maintenance. To this purpose, XML View registration and update notification
from the wrapper have been incorporated in the wrapper functionnalities. The web
wrapper loads web sources and keeps necessary information (essentially checksum and
RDF) to check if sources have changed since last time it has been loaded, and send the
necessary modification to the mediator.

Moreover, we assume, in this section and in Sections 3.1 and 3.2 that the view is
defined by one operation: projection, restriction, cartesian product or join. The general
case of a view definition involving several operators is outlined in Section 3.3. We refer
to (Dang-Ngoc et al. 2004a) for more details.

2.1 Update Information

To know the information needed to update the view, we consider the parameters that
charaterize the view computation and the source update. To do so, we first introduce
the notions of collections and fragments.

2.1.1 Collections and fragments

An XML collection is a set of XML documents representing the same entity. In other
words, a collection is a set of objects having a similar structure. For example, a
collection of libraries should only have library objects. With semi-structured data, the
structures of two objects in a collection can be equal or not (e.g an author object can
be composed of a firstname only, whereas another is composed of a lastname, and a
firstname).

An XML fragment is an identified subtree of an XML tree. A collection can be
either a full web site where each page is a document relative to the collection, or a
single page, where each XML fragment at the same level represents an object of this
collection.

By analysing the XQuery request that defines the view, we can deduce the paths in
the data source used by the request. We call this path set S the useful XML fragment.
This fragment is a subtree of the tree collection of the source.

For example, let us apply the following XQuery request applied on the XML docu-
ment of Figure 1 (b).

FOR $i in ("libraries.xml")/library/authors/

WHERE $i/author/year=1973

RETURN <result> {$i/author/firstname} {$i/author/books/book/title} </result>

To determinate the place of the fragment as precisely as possible and to minimize
the necessary information for updates, we calculate what we call the maximal prefix.
The maximal prefix is the longuest prefix common to the paths of the set S. Then, the
minimal fragment template is created by using only the useful paths and is annotated
as in (Chen et al. 2003) (Dang-Ngoc et al. 2004b) to take into account mandatory and

RNTI - 1

Classifying XML Materialized View for their Maintenance on Web Sources

(a) (b)

XML Fragment

nameaddress
3, Adam str.Old Days author

library

authors

address lastname
John

books
year
1973

category
classic

price
$7.4Only You

title
The Beginning

title

bookbook

William
firstname

Paris

XQuery

author

library

authors

lastname
books

firstname

title

book

minimal fragment

maximal prefix

Figure 1: Useful fragment of an XQuery request

optional paths (resp. in solid and dotted links in Figure 1 (a)). In the previous XQuery
example, all the paths used by the request have the path library/authors in common,
and thus, this path is the maximal prefix.

Necessary information The necessary update information provided by the wrap-
pers to notify an update to the materialized view is: (i) the XML minimal fragment
(before and after update), (ii) the position of the fragment in the collection and the
triple (datatype, update, operation). where type is the datatype concerned by the source
update (collection, fragment), update the type of source update (insertion, deletion,
modification), and operation the operation defining the view (projection, restriction,
cartesian product and join, see Section 3.3 for the general case).

Moreover, an analysis of the operators appearing in the view definition has enabled
us to build a classification (see next section) of the different maintenance cases and
has also allowed us to characterize the additional information necessary for the view
maintenance. As we shall see in the next section, this information can be computed,
either from the view itself or from the source.

2.2 Update Process

Having characterized the necessary information provided by the wrappers, we give an
overview of the way views are maintained. The process to maintain the view can now
be decomposed into two or three steps as follows:

1. Update detection and notification / Analysis of the triple: When an update on the
source has been detected by the wrapper, the view materializer is notified about
the update. The only information given at that time is the triple (datatype, up-
date, operation). Based on this triple, it is possible to determine which additional
information is needed in order to maintain the view.

2. Additional information (optional): a request builder queries the source or the
view itself about the eventual additional information needed to maintain the
views. We note that in the context of web sources, it is important to minimize
the access to the sources. Thus, when the additional information is present in
the view, we do not query the sources.

RNTI - 1

Dang-Ngoc, Sans and Laurent

3. Build the view update request / update the view: At this stage of the process,
we know the triple, and the information necessary for processing the update.
Based on our analysis of each case, the view update request can be generated
and processed.

In the architecture, we propose the following components for the processing of
updates: A request analyzer, in order to know which operator (or sequence of operators)
is used in the view definition. The other component is a request builder, in order to
query the source or the view (when needed), and to compute the XQuery update request
that is stored and processed according to a specified policy (see end of Section 2.1).

3 Update Classification

We present our method of view maintainance, using an example. To do so, we first
recall from (Dang-Ngoc and Gardarin 2003) the notions of XRelation and XTuple.

3.1 XRelation

(Dang-Ngoc and Gardarin 2003) presents the physical algebra XAlgebra based on the
relational operators designed for XML. These operators are called XOperators. This
algebra aims to construct execution plans for the evaluation of XQuery and processes
tuples (called XTuples) of tree structures. In an XRelation, domains are XML trees
of given path sets, attributes (called XAttribute) are XPaths referencing nodes in the
XML trees. Each XAttribute can be multi-valued (when referencing several sub-trees),
or empty (when referencing no subtree). XRelations are ordered collections of XTuples,
where each XTuple is composed of XPath named attributes, whose values reference
subtrees in the collection of trees. As a result, the schema of an XRelation is of type
R(XPath+, [Path+]), where XPath’s are the attributes and Path’s compose the path
set of the XML trees. Figure 2 shows an XRelation and two of its XTuples. We note
that the second attribute is multivaluated in the first XTuple, whereas this attribute
is empty in the second XTuple.

X
T

uple

city

person

car

number

name
Mary Berlin

3710

X
T

uple

person/car/color
person/name person/number

person/city

number

car

person

cityname

colorcolor

John Paris

red green 4242

XAttributes Part Trees Part

Figure 2: XTuple.

RNTI - 1

Classifying XML Materialized View for their Maintenance on Web Sources

For the sake of lisibility, we simply write XTuples as ordered sets of values sets,
ignoring references. It is important to note that this simplification implies that we
consider the values in the leaves of trees. We refer to (Dang-Ngoc et al. 2004a) for the
general case, including internal nodes. Let R be an XRelation defined by an expression
of the XAlgebra on sources.

Now, we introduce XTuple Identifiers (XTID). An XTID is a pair (source num,
XTuple num). Each XTuple from the sources involved in the construction of one XTu-
ple of R is associated with a distinct XTID (XTuple num are generated incrementally).
This XTID is associated to each XAttribute of the XTuple so that all its XAttributes
have the same XTID. Once this XTID is fixed for each XAttribute of each XTuple, it
cannot be changed in any operation applied to the XRelation. Duplicate XTuples have
distinct XTID.

Referring to the XRelation in Figure 2 , the two XTuples are written as:
({John}11, {red, green}11, {4242}11, {Roma}11)
and ({Mary}15, {}15, {3710}15, {Berlin}15).

Below are examples of XRelations computed from two sources S1 and S2.

S1

pers/name pers/car/col pers/num pers/city
{John}11 {red, green}11 {4242}11 {Roma}11

{Mickael}12 {}12 {3710}12 {London}12

{John}13 {red, green}13 {4242}13 {Roma}13

{Mary}14 {}14 {3710}14 {Berlin}14

S2

sal/num sal/stat
{3710}21 {baker}21

{9999}22 {grocer}22

• P1: Projection of S1 on pers/name, pers/car/col, pers/num.

P1

pers/name pers/car/col pers/num
{John}11 {red, green}11 {4242}11

{Mickael}12 {}12 {3710}12

{John}13 {red, green}13 {4242}13

{Mary}14 {}14 {3710}14

• R1: Restriction of S1 on pers/num > 4000

R1

pers/name pers/car/col pers/num pers/city
{John}11 {red, green}11 {4242}11 {Roma}11

{John}13 {red, green}13 {4242}13 {Roma}13

• J1: Join of S1 and S2 on per/num and sal/num.

J1

pers/name pers/car/col pers/num, sal/num pers/city sal/stat
{Mickael}12 {}12 {3710}12,31 {London}12 {baker}21

{Mary}14 {}14 {3710}14,31 {Berlin}14 {baker}21

• C1: Cartesian product of S1 and S2 (in the resulting XRelation of a join or of a
cartesian product, an XAttribute can be associated with more than one XTID).

C1

pers/name pers/car/col pers/num pers/city sal/num sal/stat
{John}11 {red, green}11 {4242}11 {Roma}11 {3710}21 {baker}21

{Mickael}12 {}12 {3710}12 {London}12 {3710}21 {baker}21

{John}13 {red, green}13 {4242}13 {Roma}13 {3710}21 {baker}21

{Mary}14 {}14 {3710}14 {Berlin}14 {3710}21 {baker}21

{John}11 {red, green}11 {4242}11 {Roma}11 {9999}22 {grocer}22

{Mickael}12 {}12 {3710}12 {London}12 {9999}22 {grocer}22

{John}13 {red, green}13 {4242}13 {Roma}13 {9999}22 {grocer}22

{Mary}14 {}14 {3710}14 {Berlin}14 {9999}22 {grocer}22

RNTI - 1

Dang-Ngoc, Sans and Laurent

3.2 Classification

We study all update cases introduced in Section 2.1.1. More precisely, we consider the
following cases: for the type of element to modify: (i) a whole XML fragment, (ii) a
part of an existing single element, (iii) a multivalued element, and (iv) a non-existing
element. The update types we consider are insertion, deletion and modification (even
though a modification can be seen as a deletion followed by an insertion). Finally,
every elementary view operation is studied separately.

3.2.1 Identifying an XTuple

The method for identifying an XTuple, even after a succession of XOperations having
combined columns, deleted or duplicated XTuples is the following: (a) from the suc-
cession of XOperations, we can deduce the initial range of each column, (b) from the
XTID, we can know to which initial XTuple an XAttribute belongs. Finally, we can
identify the original XTuple in spite of the mix implied by the XOperators. Note that
by extending this method, we could also deduce which part of each original source has
been used in the views.

3.2.2 Insertion of a fragment

Suppose a new fragment F represented by the new XTuple N is added in source S1.
An XTID is computed for the new XTuple and is added to every XAttribute of the
Xtuple.

Projection: Unprojected columns of the new XTuple are removed and the new XTu-
ple is added to the result XRelation.

For example: the insertion of ({Thomas}15, {}15, {5678}15, {London}15) into S1

gives the following XRelation P2.

P2

pers/name pers/car/col pers/num
{John}11 {red, green}11 {4242}11

{Mickael}12 {}12 {3710}12

{John}13 {red, green}14 {4242}13

{Mary}14 {}14 {3710}14

{Thomas}15 {}15 {5678}15

Restriction: The XTuple is added to the resulting XRelation if the predicate is
satisfied.

For example, insertion of ({Peter}16, {}16, {1234}16, {Roma}16) does not change
R1, and the insertion of ({Thomas}15, {}15, {5678}15, {London}15) into S1 gives the
following XRelation R2.

R2

pers/name pers/car/col pers/num pers/city
{John}11 {red, green}11 {4242}11 {Roma}11

{John}13 {red, green}13 {4242}13 {Roma}13

{Thomas}15 {}15 {5678}15 {London}15

Cartesian product: In this case, all XTuples NM for all XTuples M in S2 have to
be inserted into the view. To create these XTuples, we identify XTuples belonging to
S2 in the view itself, using the XTIDs.

RNTI - 1

Classifying XML Materialized View for their Maintenance on Web Sources

For example, the insertion of ({Thomas}15, {}15, {5678}15, {London}15) into S1

gives the following XRelation C2. To compute C2, we have considered an XTuple in
the S1 part with XTID 11 and selected all XTuples where 11 appears in. The columns
associated to S2 of these XTuples constitute the content of S2.

C2

pers/name pers/car/col pers/num pers/city sal/num sal/stat
{John}11 {red, green}11 {4242}11 {Roma}11 {3710}21 {baker}21

{Mickael}12 {}12 {3710}12 {London}12 {3710}21 {baker}21

{John}13 {red, green}13 {4242}13 {Roma}13 {3710}21 {baker}21

{Mary}14 {}14 {3710}14 {Berlin}14 {3710}21 {baker}21

{John}11 {red, green}11 {4242}11 {Roma}11 {9999}22 {grocer}22

{Mickael}12 {}12 {3710}12 {London}12 {9999}22 {grocer}22

{John}13 {red, green}13 {4242}13 {Roma}13 {9999}22 {grocer}22

{Mary}14 {}14 {3710}14 {Berlin}14 {9999}22 {grocer}22

{Thomas}15 {}15 {5678}15 {London}15 {3710}21 {baker}21

{Thomas}15 {}15 {5678}15 {London}15 {9999}22 {grocer}22

Join: We first compute from the view, the set of all XTuples from S2 that must be
joined with N . We distinguish two cases: (1) If the resulting set is not empty, the new
XTuples are created as in the cartesian product. (2) Otherwise, loading S2 is necessary
to compute the join with N .

For example, the insertions of ({Helen}15, {}15, {3710}15, {London}15) (case (1)),
and of ({Steve}16, {}16, {9999}16, {London}16) (case (2)) into S1 gives the following
XRelation J2. Moreover, the insertion of ({Bill}17, {}17, {8888}17, {Roma}17) does
not change J2. Note that S2 has to be loaded to reach this conclusion.

J2

pers/name pers/car/col pers/num, sal/num pers/city sal/stat
{Mickael}12 {}12 {3710}12,31 {London}12 {baker}21

{Mary}14 {}14 {3710}14,31 {Berlin}14 {baker}21

{Helen}15 {}15 {3710}15,31 {London}15 {baker}21

{Steve}16 {}16 {9999}16,32 {London}16 {grocer}22

3.2.3 Deletion of a fragment

Suppose a fragment F is deleted from source S1, and that F is represented by the
XTuple N with XTID a. Then to maintain the view, all XTuples such that at least
one of their XAttribute has this XTID, are deleted from the XRelation.

For example, let us consider the deletion from S1 of the fragment
F = ({John}, {red, green}, {4242}, {Roma}). First, we identify all XTuples in the
view matching the fragment, i.e., the two XTuples with XTIDs 11 and 13. Considering
one of these XTIDs, for example 11, we remove all XTuples in the view having XTID
11 in their XAttributes. The resulting XRelations of this deletion for each XOperation
considered in this example, are shown below.

• P3: the resulting state of P1 after deleting F from S1

P3

pers/name pers/car/col pers/num
{Mickael}12 {}12 {3710}12

{John}13 {red, green}13 {4242}13

{Mary}14 {}14 {3710}14

• R3: the resulting state of R1 after deleting F from S1

R3

pers/name pers/car/col pers/num pers/city
{John}13 {red, green}13 {4242}13 {Roma}13

RNTI - 1

Dang-Ngoc, Sans and Laurent

• C3: the resulting state of C1 after deleting F from S1

C3

pers/name pers/car/col pers/num pers/city sal/num sal/stat
{Mickael}12 {}12 {3710}12 {London}12 {3710}21 {baker}21

{John}13 {red, green}13 {4242}13 {Roma}13 {3710}21 {baker}21

{Mary}14 {}14 {3710}14 {Berlin}14 {3710}21 {baker}21

{Mickael}12 {}12 {3710}12 {London}12 {9999}22 {grocer}22

{John}13 {red, green}13 {4242}13 {Roma}13 {9999}22 {grocer}22

{Mary}14 {}14 {3710}14 {Berlin}14 {9999}22 {grocer}22

• J3: the resulting state of J1 after deleting F from S1

J3

pers/name pers/car/col pers/num, sal/num pers/city sal/stat
{Mickael}12 {}12 {3710}12,31 {London}12 {baker}21

We note that modifications of fragments are treated by deletions followed by insertions.

3.2.4 Inserting, Deleting and Modifying an Element

Insertion: We consider the case of inserting a node (which can be the root of a
whole subtree) N in an existing fragment F of the source S1 used by the XTuple N
with XTID a. In this case, we just have to add the new node in the set of nodes of
the XAttributes identified by the XTID a. Note that prefix/suffix must be considered,
because, all XAttributes referencing the path must be updated.

For example, in S1, consider the insertion of element color blue in the fragment, for
which the minimal fragment after projection gives:

({John}, {red, green}, {4242}, {Roma})

. By identifying a matching XTuple (see Section 3.2.1), we see that the insertion affects
the XTuples in the view P1 having XTIDs 11 and 13. As these Xtuples are equal in
the view, we take one of them, for example the one having XTID 11, and we add the
value blue in the set ({red, green}11). We obtain the following XRelation.

P4

pers/name pers/car/col pers/num
{John}11 {red, green,blue}11 {4242}11

{Mickael}12 {}12 {3710}12

{John}13 {red, green}13 {4242}13

{Mary}14 {}14 {3710}14

We note that in the case of elements, modifications are treated by identifying the
element in the value set and replacing it by the new value.

Deletion: We consider the deletion of a node (which can be the root of a subtree) N
from an existing fragment F of the source S1 used by the XTuple N with XTID a. In
this case, we have to delete the node from the set of nodes of the XAttributes identified
by the XTID a in the right column. If the node is alone in the set in a column used
as a predicate in the XOperation, all final XTuples having an XAttribute with XTID
a must be removed. Note that, here again, prefix/suffix must be considered, because
all XAttributes referencing the path must be updated.

For example, in S1, we consider the deletion of element color green in one occurence
of the fragment ({John}, {red, green}, {4242}, {Roma}). In C1, this deletion affects
one of the XTuples having XTID 11 or 13. If we choose 11, then we delete the element

RNTI - 1

Classifying XML Materialized View for their Maintenance on Web Sources

color green in each Xtuple where the element color has the XTID 11, and get the
following XRelation C4.

C4

pers/name pers/car/col pers/num pers/city sal/num sal/stat
{John}11 {red}11 {4242}11 {Roma}11 {3710}21 {baker}21

{Mickael}12 {}12 {3710}12 {London}12 {3710}21 {baker}21

{John}13 {red, green}13 {4242}13 {Roma}13 {3710}21 {baker}21

{Mary}14 {}14 {3710}14 {Berlin}14 {3710}21 {baker}21

{John}11 {red}11 {4242}11 {Roma}11 {9999}22 {grocer}22

{Mickael}12 {}12 {3710}12 {London}12 {9999}22 {grocer}22

{John}13 {red, green}13 {4242}13 {Roma}13 {9999}22 {grocer}22

{Mary}14 {}14 {3710}14 {Berlin}14 {9999}22 {grocer}22

3.3 Combination of XOperators

In this section, we outline the case where the view is defined by a combination of
XOperators. In order to maintain it when sources change, we must introduce the
notion of hidden columns. A column is marked hidden when a projection eliminates
it, while it is used in a predicate in XOperators (as restriction, or join). Notice that
if a hidden column does not appear in the client application using the view, then this
column is manipulated as all other columns when maintaining the view.

Figure 3 (a) shows a detailed example of an XAlgebra tree representing a view
defined on two sources S1 and S2 mapped to the XRelations R1 and R2 respectively.
For the sake of lisibility, only the P part of XRelations has been represented, but
Figure 3 (b) and Figure 3 (c) show how the second (resp. third) XTuple of S1 (resp.
S2) is really represented. Figure 3 (d) shows the second XTuple of the final XRelation.
Every lower case letter represents a distinct set of values references, and numbers on
the right side are XTIDs. Upper case letters represent names of columns (i.e., paths
expressions). Note that in this example, we have duplicate rows (2nd and 3rd on
R1) and multivaluated nodes (g12). During XOperations (restriction, join, projection),
columns and rows are combined, deleted or created, but it is alway possible to compute
the useful columns. In our example, in the final XRelation RF , we can reconstruct the
useful part of the third initial XTuples. Finally, hidden columns can appear after
projection. They are represented in grey on the figure.

In (Dang-Ngoc et al. 2004a), we describe how to support combinations of XOper-
ations in the view definition based on the final view, and the simple operations in the
view definition. To do so, we replace in the triple as defined in Section 2.1.1, operation
by request where request is the XML request.

In our example, suppose we insert a new fragment in the source S1 represented by
the XTuple (a16, y16, g16, h16). Applying the projection on B, C, D gives (y16, g16, h16).
Then applying the join means that from the final XRelation, we are able to rebuild
the M, N columns of XTuples where N = h. For example, we select the M and N
columns of XTuples with XTID 12, and we get the pairs (h23, u23) and (h24, w24) that
are combined with (y16, g16, h16). So finally, the XTuples to be added to the final view
are (y16, g16, h16,23, u23) and (y16, g16, h16,24, w24). (See insertion in Figure 3 (a)).

RNTI - 1

Dang-Ngoc, Sans and Laurent

12 12 12 12

pe
rs

on
/n

um
be

r

pe
rs

on
/c

ar

pe
rs

on
/a

ge

pe
rs

on
/n

am
e

person

car number

color

car

color

name
John

red green

4242

(b)

pe
rs

on
/a

ge

pe
rs

on
/c

ar

pe
rs

on
/n

um
be

r
w

or
k/

em
pl

oy
ee

w
or

k/
sa

la
ry

12 12 2412,24

person

car

color

car

color
red green

30000$

work

salarynumber
employee

4242

(d)
R4

p21 d21 q21
r22 q22 t22
u23 h23 v23
w24 h24 x24

M N O

b11 c11 d11
f12 g12 h12
j13 k13 l13
f14 g14 h14
n15 o15 p15

CB D

R3
b11 c11 d11,21 p21

f12 g12 h12,23

f12

f14 g14 h14,23

g12 h12,24

f14 g14

x24

q21

v23

u23

u23

w24

w24h14,24 x24

v23

OMD,NCB

R5

b11 c11 d11,21 p21

f12 g12 h12,23

f12

f14 g14 h14,23

g12 h12,24

f14 g14

u23

u23

w24

w24h14,24

B C D,N M

View :
Final XRelation

RF

a11 b11 c11 d11
e12 f12 g12 h12
i13 j13 k13 l13
e14 f14 g14 h14
m15 n15 o15 p15

A B C D
Source S1

R1

M N O
p21 d21 q21
r22 q22 t22
u23 h23 v23

y25 s25 z25
w24 h24 x24

Source S2

R2

23 23 23

(a)

D=N

O < 42

B, C, D

B, C, D, M

y16 g16 h16,23 u23

y16 g16 h16,24 w24

w
or

k/
tit

le

w
or

k/
sa

la
ry

w
or

k/
em

pl
oy

ee

salary
30000$ chief

work

employee title
4242

(c)

Insertion

Insertion

a16 y16 g16 h16

Figure 3: An execution plan with XRelations and XTID.

4 Conclusions and Future Works

Integrating web information has become an urgent need, and taking into account the
specificities of web information is a challenge. Indeed, web sources are semi-structured,
the sources can be unreachable and they frequently change but do not provide any
information about their changes.

In this paper, we have proposed a solution for integrating web sources into a me-
diation architecture based on materialized view. Update information are sent to the
mediator as an XML minimal fragment. Then we have given a classification of all cases
of maintenance of materialized views by considering the update type, the datatype con-
cerned by the update and the operations defining the view.

We are currently implementing our approach through a module called XML View
Refresher to be integrated in the full XML mediation architecture XLive.

In this paper, we have considered materialized views whose definitions do not in-
corporate any reconstruction phase. However this feature is commonly used in XQuery
requests in order to output the resulting data according to a format specified in this
phase. As this point is important for view definition, we are currently studying the
impact of the reconstruction phase in our approach.

References

Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., and Wiener, J. L. (1998). Incre-
mental Maintenance for Materialized Views over Semistructured Data. In Proc. of
the Twenty-fourth Intl Conf VLDB, 1998.

RNTI - 1

Classifying XML Materialized View for their Maintenance on Web Sources

Chen, Z., Jagadish, H. V., Lakshmanan, L. V., and Paparizos, S. (2003). From Tree
Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery. In Procs
of 29th Intl Conf VLDB, 2003.

Dang-Ngoc, T.-T. and Gardarin, G. (2003). Federating heterogeneous Data Sources
with XML. In Proc. of IASTED IKS Conf., 2003.

Dang-Ngoc, T.-T., Laurent, D., and Sans, V. (2004a). Maintenance of Materialized
Views on Distributed Sources (to appear). Technical report, LICP - University of
Cergy-Pontoise.

Dang-Ngoc, T.-T., Gardarin, G., and Travers, N. (2004b). Tree Graph View: On
Efficient Evaluation of XQuery in an XML Mediator. In Bases de Données Avancées
BDA (to appear), 2004.

Draper, D., Halevy, A. Y., and Weld, D. S. (2001). The Nimble Integration Engine. In
SIGMOD Record (ACM Special Interest Group on Management of Data), volume 30,
2001.

El-Sayed, M., Wang, L., Ding, L., and Rundensteiner, E. A. (2002). An Algebraic
Approach for Incremental Maintenance of Materialized XQuery Views. In Proc. of
the Fourth Intl Workshop on Web Information and Data Management (WIDM-02),
2002.

Gupta, A., Ludäscher, B., Baru, C., Velikhov, P., Marciano, R., and Papakonstanti-
nou, Y. (1999). XML-based information mediation with MIX. In SIGMOD 1999,
Proc. ACM SIGMOD Intl Conf on Management of Data, 1999.

Laurent, D., Lechtenbörger, J., Spyratos, N., and Vossen, G. (2001). Monotonic
Complements for Independant Data Warehouses. Intl Journal of VLDB, 10(4), 2001.

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems.
Computer, 25(3), 1992.

Summary

In the last years, with the growing and diversity of information in electronic form
accessible from the Web, data integration systems -such as mediators- were designed to
integrate these distributed and heterogeneous data in a uniform view. To facilitate the
integration of data across different systems, XML has been adopted as the standard
format for information exchange. XQuery, a powerful language for querying XML,
has become a major requirement for XML-based systems, and is used in mediation
systems to design views on several data sources. To optimize query evaluation, views
are materialized. The difficulty is to maintain incrementally materialized views while
sources are updated. In the context of web sources, very few informations are provided
by sources, and methods usually proposed do not apply in this context. This paper
studies how to update materialized XML views on web sources in the context of a
mediation architecture.

RNTI - 1

