
XLive: An XML Light Integration Virtual Engine

Tuyêt-Trâm Dang-Ngoc*, Clément Jamard**, Nicolas Travers**

* LICP Laboratory

University of Cergy-Pontoise

95302 Cergy-Pontoise CEDEX

dntt@dept-info.u-cergy.fr

** PRiSM Laboratory

University of Versailles

78035 Versailles CEDEX

(nicolas.travers, clement.jamard)@prism.uvsq.fr

1 Introduction

On the Internet, data are distributed on

heterogeneous sources. To integrate them in a

uniform view, lots of systems based on the famous

mediator/wrapper architecture defined by [14] have

been designed [3][12]. The data model now admitted

for representing data is semi-structured data

represented by the XML standard format. Thus now,

as well in industry as in research, integration

systems using XML-based standards have emerged

[5][4].

XLive is such an integration system based on

XML standards. It is the sequels of our experiences

on mediation design in research project (MIROWEB

[11], XML-KM) and in industry XMLMedia.

The XLive prototype is designed to be a light

mediation system with high modularity and

extension capabilities. It is a running research

vehicle designed for assessing the integration system

at every stage of the process starting from sources

extraction to the user interface, including query

parsing and modeling, optimization and evaluation,

and also benchmarking.

2 System architecture

As most mediation systems, XLive is composed of

three layers: Presentation, Integration and sources

Connection.

Each of these layers is composed of several

components that are all “exchangeable”. Indeed, all

components have a defined interface. It allows

different implementations (for testing techniques or

algorithms) on each component. Of course, all

actions of components can be traced: viewing

intermediate structures states, getting information on

memory state and execution time.

Source Localdatabase

Wrapper
View local

Management

Query

Parsing

Metadata

Manager

XLive public API

Console Web Service

Benchmark

Cost

Manager

Capabilities

Manager

Evaluation

Presentation

Integration

Connection

Sources

Query

model

Execution

plan

Query

Language

Plan

Generator

Wrapper Information Manager

Data

Results

Figure 1: XLive Architecture

The integration system is shown in Figure 1.

Components are shown as boxes and intermediate

structures are shown as ovals. Structures and

components can all be differently designed, but

structures are bounded to the component. For

example, for the XQuery query language we have

two different Parsing Components, both parsing

XQuery and for another query language; let's say

XML-QL, we should use a dedicated XML-QL

Parsing component. The XLive Integration System

is composed of the following components:

• The Wrapper is a component for accessing a

specific source for querying and retrieving

result. As sources have specific access methods,

the role of the wrapper is to translate the

wrapper specificity to a common access method.

• The Wrapper Information Manager is for

integrating information about wrapped sources.

It provides to the mediator sources metadata,

capabilities, and costs statistics on source data.

• The View local Management is a special source.

It is used to define views that are implemented

in two ways depending on data and source type.

• The Query Parsing parses a query language and

translates it into a query model.

• The Plan Generator translates a query model to

one or more execution plan. The optimal

execution plan that would be evaluated is chosen

by using cost information.

• The Evaluator evaluates the execution plan by

querying relevant sources and merging results.

3 Modules

All components described above can be designed

and implemented in different ways. Based on this

modularity, XLive is used in different research

projects (WebSI, SemWeb) by designing appropriate

component to achieve project objectives. Thus, each

component can be replaced by another

implementation matching the same interface in order

to test performance of different kind of algorithms

and methods. In the following, we describe research

algorithms and concepts that have been implemented

and tested using the prototype. All implementation

of XLive components (mediator and wrappers) is

done in Java.

3.1 Evaluation Model

From a query language, the query parser designs a

model for representing queries. Two models have

been designed: RXQuery and TGV.

3.1.1 RXQuery and XQuery Rules

RXQuery is an intermediate structure for

representing an XQuery. Each clause of the FLWOR

expression of an XQuery is mapped to a specific

structure (XFor, XWhere and XReturn). The

following steps are then applied to create an

execution plan from this model.

The first phase of decomposition transforms the

query in canonical forms, i.e., without imbrications,

using equivalence rules described in [13]. The

RXQuery structure is transformed in several ones

where imbrications are replaced by join constraints

between flat RXQuery structures.

The second phase analyses the pending queries

resulting from canonization to create atomic queries,

i.e., requests processing only one collection that can

be delegated to a wrapper. The join conditions and

the final reconstruction allow the mediator to build

the query plan.

3.1.2 Tree Graph View

The idea is to propose a representation of queries as

graphs of trees, more precisely as tree pattern graphs

interconnected by hyperlinks. The structure called

Tree Graph View (TGV) [8] is an extension of the

Generalized Tree Pattern graph proposed in [6] as a

concise and practical representation of an XQuery. It

is designed to be a more intuitive model of queries

and to allow direct optimization before generating

the physical execution plan.

person

namework

employer

text()

source2

age

value > 25

=

employee

restaurant @id

=

restaurant

category

value = 5

source1

@id
=

A

for $p in collection (“person”)
for $r in collection (“restaurant”)
where $r/category=5
and $p/age>25
return<employee>
<restaurant>{$r/@id}</>
{$p/name}</>

Figure 2: TGV representation for an XQuery

In Figure 2, the bottom right XQuery is mapped

to the TGV graph on the left. Annotated Tree

Patterns represents the request schema associated to

sources and (hyper)links between them are used

respectively for representing joins and

reconstruction.

3.2 Execution plan

The mediator Plan Generator creates an execution plan

from an evaluation model. The execution plan needs an

algebra to represent operations to evaluate.

XAlgebra [7] is an extended relational algebra

able to process XML trees in pipeline. The

XAlgebra is designed to manipulate semi-structured

data, thus it includes both relational operations to

process tables of references on needed XPaths and

navigation in XML trees. This representation is

called XTuple; XOperators manipulate XRelations

composed of XTuples. The XAlgebra is a physical

algebra, which means that algebraic expressions are

used to process XML flows and that algorithms are

directly implementing them.

3.3 Wrappers

Wrappers translate sources from their native query

language and result format to the common ones used

by the mediator: XQuery and XML. Several

wrappers have been implemented for XLive.

Relational Database Sources: Wrappers for

relational databases have been implemented

allowing the mapping from relational data to semi-

structured data. They are available for Oracle and

MySQL using JDBC.

XML Database Sources: Wrappers for native XML

databases have also been implemented. They are

available for XHive and Xyleme [2].

Web Service Sources: Two wrappers using web

services provided respectively by amazon and

google has been implemented. In the case of google,

the wrapper sees the whole World Wide Web as a

huge collection of documents, using the specific

structure defined by google. In the case of Amazon,

it is the whole amazon database that is seen as a

collection.

3.4 View Local Management

The mediator integrates two view systems. The

Text View integrates XQuery Text functionalities for

non-capable sources. Materialized Views address the

problem of interrogating web sources.

3.4.1 Text oriented indexed views

A module for creating indexed views on distributed

sources is available for XQuery Text oriented

queries. It uses an element identification scheme

based on a structural guide of the view to determine

the virtual position of indexed terms in the view. A

global index maps a virtual document in the view to

the local document in the source. On a query on the

view, virtual documents identifiers answering the

query are retrieved from the index, wrappers load

values from sources using virtual-to-local document

mapping and there is only to reconstruct results in

the mediator. For better performance, we index

references on distant data instead of materializing

the view in the mediator.

This indexing system allows answering XQuery

Text queries over distributed sources and bypasses

the eventual lack of textual capabilities of sources.

Moreover it also provides a uniform relevance

ranking scheme, allowing choice between various

formulas depending on research domain.

3.4.2 Materialized views for web sources

To optimize query evaluation on web sources, views

are materialized in a local XML warehouse. The

difficulty is to maintain incrementally the view as

the sources change [1]. In the special case of web

sources, maintenance is all the more difficult as web

sources do not communicate any information about

their update and about the data structure and ids.

In the context of web sources, very few

information are provided by sources, and methods

usually proposed cannot be applied in this context.

This component is for testing how to update

materialized XML views on web sources in the

context of mediation architecture.

In this approach, we introduce XTID in the

XAlgebra which is a pair of number incrementally

generated by the wrapper for each sources. By using

XTuples comparison and XTID, we are able to

report updates from the source to the view

materialization by comparing diff fragments. More

about it can be found in [1].

3.5 Wrapper Information Management

Information provided by wrappers are used in the

mediator to validate queries, resolve sources and

capacities.

Metadata: A generic Metadata Manager has been

implemented based on path set. The path set

describes each collection structure and associates

each target sources. We now plan to implement

another one based on XML-schema.

Capabilities: Wrappers provide capabilities rules to

the mediator. The Plan Generator is able to

understand these rules to optimize the execution plan

by delegating as much as possible work to sources.

Operations not supported by sources should be

processed by the mediator and are included as

operators in the execution plan. It leads to a valid

execution plan, i.e., that can be evaluated at

execution time. The mediator handles main

operations (Join, Construct, Union, Sort …) and also

text research operations.

Data information: Other wrapper information

should be provided to the wrapper as plug-ins, like a

generic cost model.

3.6 Benchmarking

A benchmark [10] created in the context of

distributed semi-structured model on heterogeneous

sources have been specified and applied to XLive.

It performs comparisons between queries

evaluated on single sources and through the

mediator. Mediator performance is shown in Figure

3 for a set of representative queries: selection and

projection (q01-q02-q07), join (q09-q10),

reconstruction (q11). We use two kinds of XML data

in our scenarios, data oriented and structure oriented.

XLive stores those data in different systems: native

XML repositories (XHive, Xyleme), relational

systems (Oracle, MySQL) and web sources (Google,

Amazon). Generally the overhead due to the

mediation process raises the execution time between

1.4 and 2 compared to single source evaluation.

0

1000

2000

3000

4000

5000

6000

7000

8000

Time

Q 01 Q 02 Q 07 Q 09 Q 10 Q 11

XOracle XOracle / XLive Xyleme Xyleme / XLive

Figure 3 : Benchmarking (Oracle, Xyleme, XLive)

4 The Demonstration

The XLive prototype is now used in several projects

and works entirely. It means that several

heterogeneous distributed sources based on semi-

structured data can be registered to the mediator and

that an XQuery given to the mediator on these

sources return the correct result into XML format in

a reasonable delay.

Metadata ViewMetadata View

XQueryXQuery Module ManagerModule Manager

ResultResult

Query Model ViewQuery Model View

Source
selection

Source

selection

Figure 4 : XLive Graphical Interface

The demonstration will go through the execution

process of an XQuery, from parsing to plan

generation of a large set of queries on several

distributed heterogeneous sources. Every step of the

process is detailed allowing users to test and

compare different query model, execution plans and

evaluation. The graphical administration console

displays intermediate structures (RXQuery, TGV,

XAlgebra execution plan) for better process

information.

The demonstration will show the ability to easily

exchange components through our interface in

Figure 4. We then compare performances of the

mediator with different component combination

(query and plan optimization, views management for

XQuery Text).

5 References

[1] Abiteboul S. On Views and XML. PODS:

1999, pp 1-9, Symposium on Principles of

Database Systems, May 31 - June 2, 1999,

Philadelphia, USA.

[2] Abiteboul S., et al. The Xyleme Project.

Computer Networks 39(3): 225-238 2002.

[3] Ahmed R., Albert J., Du W., Kent W. Litwin

W., Shan M. An Overview of Pegasus. IEEE

1987.

[4] Baru C., et al. XML-Based Information

Mediation with MIX. In Demo Session,

ACM-SIGMOD'99, Philadelphia, PA, 1999.

[5] Chawathe S., et al. The TSIMMIS Project:

Integration of Heterogeneous Information

Sources, IPSJ Conf, Tokyo, Japan, 1994

[6] Chen Z., et al. From Tree Patterns to

Generalized Tree Patterns: On efficient

Evaluation of XQuery. Very Large Data Bases

2003, Germany Sept 2003.

[7] Dang-Ngoc T.T., Gardarin G. Federating

Heterogeneous Data Sources. In proc of Intl

Conf on Information and Knowledge Sharing

(IKS), Scottsdale, USA, 2003

[8] Dang-Ngoc T.T., Gardarin G., Travers N.

Tree Graph View: On Efficient Evaluation of

XQuery in an XML Mediator In proc of 20th

conf. Bases de Données Avancées (BDA),

Montpellier, France, 2004.

[9] Dang-Ngoc T.T., Kou H., Gardarin G.

Mediating the Web through XML concrete

Views. In proc of Int Conf on DataBase and

Applications (DBA), Innsbruck, 2004.

[10] Dragan F., Gardarin G. Benchmarking an

XML Mediator, ICEIS 2005 Miami USA. To

appear.

[11] Fankhauser P., Gardarin G., Lopez M., Muñoz

J., Tomasic A.: Experiences in Federated

Databases: From IRO-DB to MIRO-Web.

VLDB 1998.

[12] Gardarin G., Finance B., Fankhauser P., Klas

W. IRO-DB: a Distributed System Federating

Object and relational Databases. OOMS 1994.

[13] Manolescu I., Florescu D., Kossmann D.

Answering XML Queries over Heterogeneous

Data Sources, 27th Intl Conf VLDB, Roma,

Italy, 2001.

[14] Wiederhold G., Mediators in the Architecture

of Future Information Systems, IEEE

Computer, vol.25,N.3, 1992.

